7.4 Area of a surface

We learn:

- The formula that will give the area of a surface, given a parametrization of the surface.
- Why it works.

Review. When we did integrals along curves there were two kinds:

- an integral giving the length of the curve, or giving the mass of a wire from its line density
- an integral giving the work done by a vector field in moving along the path.

We assume we have a parametrization Phi : D $->$ R^3
satisfying conditions: Phi is $1-1$, differentiable with continuous partial derivatives, and regular.

The formula:

$$
\text { Area } \iint_{D}\left\|T_{4} \times T_{v}\right\| d u d v
$$

Example: the unit sphere:
$\operatorname{Phi}(u, v)=(\sin v \cos u, \sin v \sin u, \cos v)$

$$
\begin{aligned}
& T_{-} u=(-\sin v \sin u, \sin v \cos u, 0) \\
& T_{-} v=(\cos v \cos u, \cos v \sin u,-\sin v)
\end{aligned}
$$

T_u x T_v $=(-\sin \wedge 2 v \cos u,-\sin \wedge 2 v \sin u,-\sin v \cos v)$

$$
\left\|T_{-} u \times T_{-} v\right\|=\sqrt{\sin \wedge 4 v+\sin \wedge 2 v \cos \wedge 2 v}=|\sin v|
$$

Area $=\int_{0}^{\pi} \int_{0}^{2 \pi} \sin v d u d v=4 \pi$
Note $\sin r=|\sin r|$ when $0 \leqslant v \leqslant \pi$.

Why it works:

